

biomembranes themselves. The ability of the Mg²⁺ ion to form anhydrous as well as partly hydrated salt complexes with some of these functions, including the phosphate of phospholipids, especially cardiolipins,^{26,27} is an important datum in considerations of biological Mg ionophoresis.

Supplementary Material Available: structure factors for the triclinic and orthorhombic crystals (18 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) (a) Department of Biochemistry; (b) Department of Chemistry. The support of this research by the National Science Foundation Grants CHE76-16785 and MPS73-04944 to F.R. is gratefully acknowledged.

- E. C. Ashby, *Q. Rev., Chem. Soc.*, **21**, 259 (1967).
 J. Toney and G. D. Stucky, *J. Organomet. Chem.*, **28**, 5 (1971).
 M. Vallino, *J. Organomet. Chem.*, **20**, 1 (1969).
 P. T. Moseley and H. M. M. Shearer, *Chem. Commun.*, 279 (1968).
 K. Manning, E. A. Petch, H. M. M. Shearer, K. Wade, and G. Whitehead, *J. Chem.*, **26**, 100 (1976). Chem. Soc., Chem. Commun., 107 (1976).

- B. Morosin, Acta Crystallogr., 22, 315 (1967).
 M. R. Truter and B. L. Vickey, J. Chem. Soc., Dalton Trans., 395 (1972).
 M. Vijayan and M. A. Viswamitra, Acta Crystallogr., 23, 1000 (1967).
- (10) M. D. Toester, M. S. Hussain, and P. G. Lenhart, Inorg. Chem., 9, 151
- (1970). (11) J. P. Deloume, H. Loiseleur, and G. Thomas, Acta Crystallogr., Sect. B, 29,
- 668 (1973).
- (12) P. S. Ezra and R. L. Collin, Acta Crystallogr., 29, 1398 (1973).
 (13) H. Felkin, P. J. Knowles, B. Meunier, A. Mitschler, L. Richard, and R. Weiss,
- J. Chem. Soc., Chem. Commun., 44 (1974). (14) F. Ramirez, R. Sarma, Y. F. Chaw, T. M. McCaffrey, J. F. Marecek, B. McKeever, and D. Nierman, J. Am. Chem. Soc., preceding paper in this issue
- (15) F. Schröder and H. Spandau, Naturwissenschaften, 53, 360 (1966).
- (16) M. C. Pérucaud and M. T. LeBihan, Acta Crystallogr., Sect. B. 24, 1502
- (1968).
 (17) A. C. T. North, D. C. Phillips, and F. S. Mathews, *Acta Crystallogr., Sect.* A, 24, 351 (1968).
- (18) R. D. Shannon and C. T. Prewitt, Acta Crystallogr., Sect. B, 25, 925 (1964).
- (19) N. W. Alcock, Adv. Inorg. Chem. Radiochem., 15, 1 (1972).
 (20) H. Schibilla and M. T. LeBihan, Acta Crystallogr., 23, 332 (1967).
 (21) For instance, Moseley and Shearer (ref 5) have commented on the similaritles of the structure of [(CH₃)₃COMgBrO(C₂H₅)₂]₂ in the crystal and in
- (22) D. Bryce-Smith and I. F. Graham, *Chem. Commun.*, 561 (1966).
 (23) (a) Y. A. Ovchinnikov, V. T. Ivanov, and A. M. Shkrob, "Membrane-Active Complexones", Elsevier, New York, N.Y., 1974; (b) S. McLaughlin and M. Elsenberg, *Annu. Rev. Biophys. Bioeng.*, 4, 335 (1975).
 (24) H. Grayse, C. S. Stard, C. Stard, S. Stard
- (24) H. Lardy, S. N. Graven, and S. Estrada-O, Fed. Proc., 26, 1355 (1967).
 (25) (a) B. C. Pressman, Fed. Proc., 32, 1698 (1973); (b) H. Degani and H. Friedman, Biochemistry, 13, 5022 (1974).
 (28) E. Bentre, B. V. Lecentre, J. S. Marcari, B. T. Coldina and C. H. Satting, S. S. Satting, J. S. Marcari, J. S. Marc
- (26) F. Ramirez, P. V. Ioannou, J. F. Marecek, B. T. Golding, and G. H. Dodd, Tetrahedron, 33, 599 (1977).
- (27) C. A. Tyson, H. van de Zande, and D. E. Green, J. Biol. Chem., 251, 1326 (1976).

Kinetics and Mechanism of the Alkyl and Aryl Elimination from η^{5} -Cyclopentadienylalkyl(and -aryl)dicarbonyliron(II) Complexes Initiated by Mercury(II) Halides

Louis J. Dizikes and Andrew Wojcicki*

Contribution from the McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210. Received December 27, 1976

Abstract: The reactions of η^5 -C₅H₅Fe(CO)₂R (R = alkyl and aryl) with HgX₂ (X = Cl, Br, or I) in organic solvents (usually THF or isopropyl alcohol) were found to proceed by three distinct pathways, affording the following products: (1) η^5 -C₅H₅Fe- $(CO)_2X$ and RHgX, (2) η^5 -C₅H₅Fe(CO)₂HgX and RX, and (3) Hg₂X₂ and various substances derived from decomposition of the oxidized η^5 -C₅H₅Fe(CO)₂R. The observed pathway(s) for the cleavage of the Fe-R bond depends principally on the ligand R. Accordingly, primary alkyl and aryl groups cleave mainly via reaction 1; secondary and tertiary alkyl, benzyl, and allyl groups react either exclusively or substantially by path 2; and the good electron releasing groups CH(CH₃)₂ and CH₂C(CH₃)₃ display the redox behavior of path 3. The rates of these cleavage reactions were monitored by infrared and ¹H NMR spectroscopy, mostly at 25 °C. Third-order kinetics, first order in η^5 -C₅H₅Fe(CO)₂R and second order in HgX₂, were found for reactions 1 and 2 in THF or isopropyl alcohol, whereas second-order kinetics, first order in each of η^5 -C₅H₅Fe(CO)₂R and HgX₂, were found for reaction 3. Generally, the rate constants increase with the more negative values of the Taft σ^* of the alkyl group or σ^+ of the aryl group, indicative of the electrophilic nature of these cleavages. A positive salt effect and a large solvent effect, THF (1) \ll isopropyl alcohol or acetone ($\sim 10^3$) \ll nitrobenzene ($\sim 10^5$), were found in all cases. A mechanism is proposed which involves reversible addition of HgX₂ to the metal in η^5 -C₅H₅Fe(CO)₂R, followed either by decomposition of the adduct to products (path 3) or by reaction with another molecule of HgX₂ to give $[\eta^5$ -C₅H₅Fe(CO)₂(HgX)R]⁺HgX₃⁻. This second intermediate then undergoes reductive elimination of RHgX (path 1) or dissociation of R⁺ (path 2) to afford the observed products. Consistent with the proposed mechanism, the reaction by path 2 between the optically active $\eta^5-C_5H_5Fe(C-t)$ O_2 *CH(CH₃)C₆H₅ and HgCl₂ yields racemic C₆H₅(CH₃)CHCl.

Cleavage reactions of transition metal-carbon σ bonds (M-R), both eliminative,

$$M-R + ex \rightarrow M-X + ER$$

and insertion-like.

$$M-R + EX \rightarrow M-X-E-R$$

are processes of great importance in catalysis and stoichiometric synthesis.²⁻⁴ Although the literature abounds in examples of such reactions, there is relatively little known about their mechanisms.

We have recently been engaged in a systematic investigation of mechanisms of cleavage reactions of η^5 -C₅H₅Fe(CO)LR (L = CO or P donor ligand) and related complexes with vari-

ous electrophilic reagents. The choice of η^5 -C₅H₅Fe(CO)LR as the substrate complex was dictated by several considerations. First, compounds of this formula are known for a variety of alkyl and aryl groups R when L is CO or a phosphorus donor ligand. They are, on the whole, stable, readily accessible, and inexpensive organometallic derivatives. Second, stereochemical studies at α carbon have been carried out, principally by Whitesides^{5,6} and Baird.^{7,8} for several cleavage reactions of η^5 -C₅H₅Fe(CO)LR. These studies furnished useful information on the mechanism of such processes. Third, complexes of the formula n^5 -C₅H₅Fe(CO)LR (or n^5 -cyclopentadienyl ring-substituted analogues) where L is a phosphorus donor ligand contain a chiral metal center and have been shown to exhibit considerable configurational stability.9-11 Thus they lend themselves well to studies of stereochemical changes at metal in various cleavage reactions. Several such investigations have now been reported.10-16

The last two considerations are especially important to our proposed study. This is because the mechanistic approach adopted here entails, whenever possible, complementary examination of the stereochemistry at both α carbon and metal, as well as kinetics, for the same cleavage reaction of a given type of metal complex.

In our earlier papers described were kinetic studies on the electrophilic insertion reaction of SO₂ with η^{5} -C₅H₅Fe(CO)₂R and related complexes.¹⁷⁻¹⁹ Stereochemical studies at the iron center for several Fe-R bond cleavage reactions, including that by SO₂, were also reported.^{10,14-16} The investigation described herein is concerned with another electrophilic scission reaction of the Fe-R bond of η^{5} -C₅H₅Fe(CO)₂R, namely that effected by HgX₂ (X = Cl, Br, or I).

Since the environmentally important discovery by Wood and co-workers²⁰ of both enzymatic and nonenzymatic formation of CH₃Hg⁺ and (CH₃)₂Hg from methylcobalamin and mercury(II) salts, the electrophilic cleavage of transition metalcarbon σ bonds by various mercury(II) species has been the subject of extensive investigations. Several stereochemical^{21,22} and kinetic²³⁻²⁹ studies have been reported, primarily on cobalt(III) and chromium(III) compounds. Invariably a bimolecular interaction was found between the metal-alkyl complex and HgX₂, suggestive of an S_E2 type of mechanism.

Now we describe in detail our kinetic studies of the reaction between various η^{5} -C₅H₅Fe(CO)₂R alkyl and aryl complexes and mercury(II) halides. Based on these results and some complementary stereochemical data,^{6,7,15} a mechanism is proposed which differs substantially from those invoked elsewhere.²²⁻²⁴ A preliminary account of this work was communicated earlier.³⁰ The stereochemistry of the cleavage of an iron-secondary carbon σ bond is also described.

Experimental Section

General Procedures. An argon atmosphere was employed routinely in all preparative and kinetic aspects of this work. Especially air sensitive solutions and those used for kinetic studies were prepared in a drybox. Ventron alumina, deactivated with distilled water (6-10%), or Florisil (60-100 mesh), from Fisher, were used in chromatographic separations and purifications. Unless otherwise specified ultraviolet irradiations were carried out in a Rayonet Model RPR-100 photochemical reactor using 16 3500-Å lamps. Mass spectra (MS) were recorded by Mr. C. R. Weisenberger on an A.E.I. Model MS-9 spectrometer and by Mr. R. Patterson on a DuPont Instruments 21-490 spectrometer connected to a Perkin-Elmer 990 gas chromatograph. Gas chromatography (GC) was performed on a Varian Associates Aerograph Series 1200 instrument using a 10% SE-30 column. Elemental analyses were done by Galbraith Laboratories, Inc., Knoxville, Tenn.

Physical Measurements. Melting points were obtained on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Specific rotations were measured at the sodium D line (589 nm) or mercury green line (546 nm) on a Perkin-Elmer Model 141 polarimeter using a 1-dm tube. Proton NMR spectra were obtained on a Varian Associates A-60A spectrometer using tetramethylsilane (Me₄Si) as an internal standard. Infrared (IR) measurements were made on a Beckman IR-9 spectrophotometer using polystyrene film for calibration. The frequencies obtained are accurate to ± 1 cm⁻¹. Solutions were placed in 0.05-mm CaF₂ cells, whereas gaseous materials were introduced into a 10-cm KBr cell for these measurements.

Materials. Reagent grade $HgCl_2$ was used as received; for some reactions it was recrystallized from hot, freshly distilled dioxane and dried at 100 °C (~0.1 Torr) for 24 h. Lithium chloride, also reagent grade, was dried for 24 h at 100 °C (~0.1 Torr) and stored over P_4O_{10} . Reagent grade NH_4PF_6 was recrystallized from hot methanol and dried at 70 °C (~0.1 Torr) for 24 h. Tetrahydrofuran (THF), bp 65-66 °C, and dioxane, bp 100-101 °C, both reagent grade, were distilled from LiAlH₄ under Ar immediately before use. Technical grade pentane was distilled from CaH₂, bp 35 °C. Reagent grade isopropyl alcohol was saturated with Ar and stored over molecular sieves. All other chemicals and solvents procured commercially were reagent grade or equivalent quality and were used without further purification.

Molecular Weight and Electrical Conductivity of $HgCl_2$ in THF. Using a Model 301-A Mechrolab osmometer, molecular weight of $HgCl_2$ in THF solution was measured over the concentration range 0.02-0.14 M. An average value of 273 g/mol was obtained, with no observable increase at higher concentrations. Calcd for $HgCl_2$: 271.5 g/mol.

Conductivity measurements on 0.002-0.1 M solutions of HgCl₂ in THF were made on an Industrial Instruments Co. Model RC 16B2 bridge. A molecular conductivity of $(2.2 \pm 0.2) \times 10^{-3} \text{ cm}^2 \Omega^{-1}$ was obtained, which did not increase at lower concentrations of HgCl₂. A 0.001 M solution of NH₄PF₆ in THF, measured for comparison, gave a molar conductivity of 3.5 cm² Ω^{-1} .

Metal Alkyls, Aryls, and Related Complexes. The alkyl complexes η^5 -C₅H₅Fe(CO)₂R where R = CH₃,³¹ CD₃,³¹ C₂H₅,³¹ CH(CH₃)₂,³² C(CH₃)₃,³³ CH₂C(CH₃)₃,¹⁷ CH₂CH₂C(CH₃)₃,¹⁷ CH₂C₆H₅,³⁴ CH(CH₃)C₆H₅,³⁵ (+)₅₄₆-CH(CH₃)C₆H₅,³⁵ CH₂Si(CH₃)₃,³⁶ and \overline{C} (CH₃)CH₂C(CN)₂C(CN)₂CH₂³⁷ were prepared by known procedures. The complex with R = CH₂CH₂C₆H₅ was obtained in 71% yield as yellow-orange crystals, mp 75 °C, by the general method of Piper and Wilkinson³¹ using Na[η^5 -C₅H₅Fe(CO)₂] and C₆H₅CH₂CH₂Cl: ν (C \equiv O) (pentane, cm⁻¹) 2011 vs, 1959 vs; 'H NMR (CDCl₃, τ) 2.80 (s, 5 H, C₆H₅), 5.25 (s, 5 H, C₅H₅), 7.79 (A₂B₂m, 4 H, CH₂CH₂).

Anal. Calcd for $C_{15}H_{14}FeO_2$: C, 63.86; H, 5.00. Found: C, 63.93; H, 4.85.

The η^5 -indenyl complex η^5 -C₉H₇Fe(CO)₂CH₂C₆H₅ was prepared as reported previously.¹⁷ The aryl complexes η^5 -C₅H₅Fe(CO)₂C₆H₅ and η^5 -C₅H₅Fe(CO)₂C₆H₄OCH₃-*p* were synthesized using the general procedure of King and Bisnette.³⁸ η^5 -C₅H₅Fe(CO)₂C₆H₄Cl-*p*, mp 91 °C, was prepared analogously in 26% yield: ν (C=O) (pentane, cm⁻¹) 2026 vs, 1976 vs; ¹H NMR(CDCl₃, τ) 2.86 (A₂B₂m, 4 H, C₆H₄), 5.20 (s, 5 H, C₅H₅).

Anal. Calcd for C₁₃H₉ClFeO₂: C, 54.12; H, 3.14. Found: C, 54.26; H, 2.96.

The complexes η^5 -C₅H₅Fe(CO)₂Cl³⁹ and η^5 -C₅H₅Fe(CO)₂HgCl⁴⁰ were made by known methods. The organochromium compounds η^5 -C₅H₅Cr(NO)₂CH₃ and η^5 -C₅H₅Cr(NO)₂Cl were supplied by Ms. N. DeLuca.

Reactions of Metal Alkyls and Aryls with Mercury(II) Halides. Cleavage reactions between the metal-alkyl or -aryl complexes and HgX₂ (X = Cl, Br, or l) were generally carried out in THF, and less frequently in isopropyl alcohol or acetone. All of the organometallic starting compounds were chromatographed immediately before use. Equimolar amounts of reactants, sometimes in higher concentrations than those used for the kinetic studies (vide infra), were generally employed to facilitate separation and identification of products. Metal carbonyl and nitrosyl products were characterized by a comparison of their melting points, 'H NMR spectra, and IR ν (C=O) or ν (N=O) with the corresponding literature data.

A Beer's law plot for the $\nu_s(\overline{C=0}) = 2048 \text{ cm}^{-1}$ absorption of $\eta^5 \cdot C_5 H_5 Fe(CO)_2 Cl$ in THF was found to be linear in the concentration range 5×10^{-3} to 5×10^{-2} M. A similar plot for $\nu_{as}(\overline{C=0}) = 1959 \text{ cm}^{-1}$ of $\eta^5 \cdot C_5 H_5 Fe(CO)_2 HgCl$ in THF exhibits linearity over the concentrations 2×10^{-3} to 2×10^{-2} M. These plots were often

employed in a direct determination of the yields of the appropriate iron carbonyl product in the reaction solution, since workup of such mixtures generally resulted in some decomposition.

The organomercury products RHgX were characterized by reference to their known melting points⁴¹⁻⁴⁵ and/or ¹H NMR spectra.⁴⁶ Organic compounds formed in some reactions were removed with the solvent under reduced pressure (~0.1 Torr) from the metal-containing species and trapped at -196 °C. These solutions were then analyzed by GC-MS and/or by ¹H NMR spectroscopy. The Hg₂Cl₂ precipitate was characterized by its mass spectrum, consisting only of the ions Hg⁺, HgCl⁺, and HgCl₂⁺, and by its reaction with aqueous OH^{- 47} Liberated CO was identified by its characteristic IR absorption at 2146 cm⁻¹.

A. η^5 -C₅H₅Fe(CO)₂R, Where R = CH₃, C₂H₅, CH₂C(CH₃)₃, CH₂CH₂C(CH₃)₃, CH₂CH₂C₆H₅, or CH₂Si(CH₃)₃, with HgCl₂. To η^5 -C₅H₅Fe(CO)₂R (~0.5 g) in 1-2 mL of THF was added an equimolar amount of HgCl₂ dissolved in 1-3 mL of THF. The flask was stoppered and maintained at 25 °C for 12 h, at which time the reaction was found by IR spectroscopy to be >95% complete, with the only detectable metal carbonyl product being η^5 -C₅H₅Fe(CO)₂Cl. The solution was concentrated to ~1 mL, treated with 5 mL of benzene, and chromatographed on a 3 × 20-cm column of Florisil. Pentane eluted any unreacted η^5 -C₅H₅Fe(CO)₂R (trace), then benzene removed colorless RHgCl (86-96%), and finally 3:1 (v/v) CH₂Cl₂/ acetone eluted a red band containing η^5 -C₅H₅Fe(CO)₂Cl (82-94%). Some decomposition of the products occurred upon workup.

Based on the absorbance of the IR $\nu_s(C\equiv O)$ band of the η^5 -C₅H₅Fe(CO)₂Cl, yields of \geq 97% were obtained in the reaction of η^5 -C₅H₅Fe(CO)₂R (0.5 mmol), where R = CH₃, C₂H₅, and CH₂CH₂C(CH₃)₃ with ca. tenfold excess HgCl₂ in THF (25 mL) at 25 °C.

A solution of η^5 -C₅H₅Fe(CO)₂CH₂C(CH₃)₃ (0.06 g, 0.25 mmol) and HgCl₂ (0.68 g, 2.5 mmol) in THF (25 mL) was sitrred for 3 days. IR spectroscopy showed η^5 -C₅H₅Fe(CO)₂Cl (10%) to be the only iron carbonyl product. In addition, appreciable amounts of each of the following compounds were formed: Hg₂Cl₂ as a gray-white precipitate, cyclopentadiene, neopentyl chloride, CO, and a THF-soluble ironcontaining material free of CO or organic ligands, which was not characterized.

B. η^5 -C₅H₅Fe(CO)₂CH₃ with HgX₂, Where X = Br or I. Acetone solutions (10 mL) of approximately equimolar (~1 mmol) η^5 -C₅H₅Fe(CO)₂CH₃ and HgX₂ were stirred for 12 h at 25 °C. The solvent was removed, the residue was extracted with CDCl₃, and the extracts were filtered. ¹H NMR spectra of the filtrate revealed the η^5 -C₅H₅Fe(CO)₂X⁴⁸ and RHgX.

C. η^{5} -C₅H₅Fe(CO)₂CH₂CH₂C₆H₅ with HgX₂, Where X = Br or I. THF solutions (5 mL) of η^{5} -C₅H₅Fe(CO)₂CH₂CH₂C₆H₅ (~0.25 mmol) and HgX₂ (2.5 mmol) were stored for 48 h (X = Br) and 2 weeks (X = I) at 25 °C. Only the η^{5} -C₅H₅Fe(CO)₂X was detected by IR spectroscopy in the ν (C=O) region.⁴⁸

D. η^5 -C₅H₅Fe(CO)₂CH₂C₆H₅ with HgCl₂. A solution of the benzyl complex (0.15 g, 0.56 mmol) and HgCl₂ (1.75 g, 6.45 mmol) in isopropyl alcohol (25 mL) was stirred for 3 h at 25 °C, at which time IR spectroscopy showed the yield of η^5 -C₅H₅Fe(CO)₂Cl to be >50%. A trace amount of Hg₂Cl₂ along with an orange precipitate were filtered off, dissolved in CHCl₃, and chromatographed on a Florisil column. Elution with benzene removed C₆H₅CH₂HgCl (0.039 g, 22%) and elution with CHCl₃ yielded yellow-orange η^5 -C₅H₅Fe(CO)₂HgCl (0.083 g, 36%).

Reaction between η^5 -C₅H₅Fe(CO)₂CH₂C₆H₅ (0.12 g, 0.45 mmol) and HgCl₂ (0.66 g, 2.43 mmol) in THF (~0.3 mL) for 2 h at 25 °C afforded 0.15 g (80%) of η^5 -C₅H₅Fe(CO)₂HgCl and 0.02 g (21%) of η^5 -C₅H₅Fe(CO)₂Cl.

E. η^{5} -C₅H₅Fe(CO)₂CH(CH₃)₂ with HgCl₂. A solution of η^{5} -C₅H₅Fe(CO)₂CH(CH₃)₂ (3.38 g, 15.7 mmol) and HgCl₂ (2.72 g, 10.0 mmol) in THF (25 mL) under Ar was frozen, the Ar was pumped off on a vacuum line, and the reaction mixture was allowed to warm back to 25 °C, at which temperature it was maintained for 27 h. The following materials were found to be present: (a) precipitated Hg₂Cl₂, >95% based on the HgCl₂; (b) unreacted η^{5} -C₅H₅Fe(CO)₂CH(CH₃)₂ (1.0 g, 4.5 mmol); (c) η^{5} -C₅H₅Fe(CO)₂HgCl (<5%) and η^{5} -C₅H₅Fe(CO)₂Cl (trace); (d) CO; and (e) propene, isopropyl chloride, and cyclopentadiene in the approximate ratio 0.4:0.8:1.0 (GC-MS analysis). In addition there were trace quantities of unidentified iron carbonyls, a species with ν (C=O) \sim 1750 cm⁻¹ (probably (CH₃)₂CHCOCl), and iron-containing de-

composition impurities. No $[\eta^5-C_5H_5Fe(CO)_2]_2$ was detected.

When η^5 -C₅H₅Fe(CO)₂CH(CH₃)₂ (0.23 g, 1.0 mmol) and HgCl₂ (5.53 g, 20.4 mmol) were allowed to react in the presence of 2,2-diphenyl-1-picrylhydrazyl (DPPH) (0.42 g, 1.1 mmol) in 25 mL of THF for 48 h at 25 °C, the organic products were again propene, isopropyl chloride, and cyclopentadiene, but in the ratio 0.5:0.7:0.04 (GC-MS analysis). Also recovered from the reaction solution was a dark red crystalline compound characterized as 2,2-diphenyl-1-picrylhydrazine (0.31 g, 72%): mp 171 °C (lit.⁴⁹ mp 172–173 °C); MS (70 eV, source temp 90 °C) P⁺ m/e 395, no Fe or Hg; ¹H NMR (CDCl₃, τ) =0.33 (s, br), 2.78 (c, br); IR spectrum (KBr pellet, cm⁻¹) similar to that of DPPH, but shifted to lower frequency by 5–55 cm⁻¹ plus absorptions at 3290 m, 3110 w.

Anal. Calcd for $C_{18}H_{13}N_5O_6$; C, 54.68; H, 3.29; N, 17.72. Found: C, 54.78; H, 3.59; N, 14.56.

No other species was trapped. Hg_2Cl_2 and unreacted $HgCl_2$ were also isolated. Other metal-containing products were not examined.

F. η^5 -C₅H₅Fe(CO)₂CH(CH₃)C₆H₅ and (+)₅₄₆- η^5 -C₅H₅Fe(C-O)₂*CH(CH₃)C₆H₅ with HgCl₂. A solution of η^5 -C₅H₅Fe(C-O)₂CH(CH₃)C₆H₅ (0.087 g, 0.31 mmol) and HgCl₂ (2.71 g, 10.0 mmol) in 25 mL of THF was stirred for 2 h at 25 °C. A slight cloudiness was observed owing to the formation of trace Hg₂Cl₂. IR spectroscopy showed η^5 -C₅H₅Fe(CO)₂HgCl (91%) to be the only carbonyl-containing product.

To a solution of $(+)_{545}$ - η^5 -C₅H₅Fe(CO)₂*CH(CH₃)C₆H₅ (0.16 g, 0.57 mmol), $[\alpha]^{25}_{546} = +68^{\circ}$ (CHCl₃ solution), in 1 mL of acetore was added HgCl₂ (0.16 g, 0.59 mmol) dissolved in 4 mL of acetone. An immediate reaction was observed with the formation of η^5 -C₅H₅Fe(CO)₂HgCl. The mixture was stirred for 1 h at 25 °C and the solvent and other volatile matter were removed at ca. 0.1 Torr and collected at -196 °C. After warming to 25 °C the acetone was pumped off at ca. 20 Torr and the remaining clear liquid (0.034 g, 42%) was identified as C₆H₅(CH₃)CHCl: calculated MS P⁺ for C₈¹H₉³⁵Cl, *m/e* 140.039 27; found *m/e* 140.039 49 (70 eV, source temp 120 °C). A CHCl₃ solution of this liquid showed $[\alpha]^{25}_{589} = 0^{\circ}.50$

G. η^5 -C₅H₅Fe(CO)₂C(CH₃)₃ with HgX₂, Where X = Cl, Br, or I. A solution of η^5 -C₅H₅Fe(CO)₂C(CH₃)₃ (0.12 g, 0.51 mmol) and HgCl₂ (0.14 g, 0.51 mmol) in 1-2 mL of THF was stirred for 15 h at 25 °C. Removal of the volatiles (~0.1 Torr) left 0.20 g (96%) for the yellow-orange η^5 -C₅H₅Fe(CO)₂HgCl. Analysis of the collected liquid revealed the presence of (CH₃)₃CCl characterized by MS and ¹H NMR spectroscopy.⁵¹

A slurry of η^{5} -C₅H₅Fe(CO)₂C(CH₃)₃ (0.5-0.6 mmol) and HgX₂ (X = Br or I) (0.7-0.9 mmol) in ca. 0.5 mL of acetone- d_6 was allowed to react for 1 h at 25 °C, additional solvent (2 mL) was introduced, and the solution was filtered. ¹H NMR analysis of the filtrate revealed the η^{5} -C₅H₅Fe(CO)₂HgX⁴⁰ and (CH₃)₃CX.⁵¹

H. η^5 -C₅H₅Fe(CO)₂ \bar{R} , Where $R = C_6H_5$, p-C₆H₄Cl, and p-C₆H₄OCH₃, with HgCl₂. The title aryl complexes (0.2-0.7 g) reacted with excess HgCl₂ in ca. 5 mL of THF, acetone, or isopropyl alcohol at 25 °C to afford η^5 -C₅H₅Fe(CO)₂Cl (>95% by IR ν (C=O) absorbance) and RHgCl (>85%) as the major products. Some η^5 -C₅H₅Fe(CO)₂HgCl (<5%) was detected by IR and ¹H NMR spectroscopy for the reactions of the R = C₆H₅ and p-C₆H₄OCH₃ complexes in all three solvents. Hg₂Cl₂ was observed, in trace amount, only in the reactions of the R = p-C₆H₄OCH₃ complex.

I. η^5 -C₉H₇Fe(CO)₂CH₂C₆H₅ with HgCl₂. The reaction of η^5 -C₉H₇Fe(CO)₂CH₂C₆H₅ (0.0081 g, 0.025 mmol) with HgCl₂ (0.91 g, 3.3 mmol) in THF (25 mL) for 12 h at 25 °C yielded a red solution showing IR ν (C=O) absorptions of η^5 -C₉H₇Fe(CO)₂Cl (2044 and 2000 cm⁻¹). No precipitate was formed.

J. η^5 -C₅H₅Cr(NO)₂CH₃ with HgCl₂. A THF solution (25 mL) of η^5 -C₅H₅Cr(NO)₂CH₃ (0.10 g, 0.52 mmol) and HgCl₂ (0.20 g, 0.74 mmol) was stirred for 1.5 h at 25 °C, at which time the IR spectrum showed complete conversion of the alkyl complex to η^5 -C₅H₅Cr(NO)₂Cl. Chromatography on a Florisil column, eluting with benzene and then with 3:1 (v/v) CH₂Cl₂/acetone, yielded CH₃HgCl (0.12 g, 92%) and η^5 -C₅H₅Cr(NO)₂Cl (0.10 g, 90%). Some decomposition of the products occurred upon workup.

Reactions of \eta^5-C₅H₅Fe(CO)₂R with HgCl₂ in Dilute Solution. The reactions of selected η^5 -C₅H₅Fe(CO)₂R with excess HgCl₂ (~0.01 M) in THF (R = CH₃, CH₂Si(CH₃)₃, CH(CH₃)C₆H₅, and C(CH₃)₃) or isopropyl alcohol (R = p-C₆H₄OCH₃) at 25 °C yielded the same products as the corresponding reactions run at higher [HgCl₂] (up to 1 M). The only detected iron carbonyl product was

 η^5 -C₅H₅Fe(CO)₂Cl when R = CH₃, CH₂Si(CH₃)₃, and p-C₆H₄OCH₃, and the only observed iron carbonyl product was η^5 -C₅H₅Fe(CO)₂HgCl when R = CH(CH₃)C₆H₅ and C(CH₃)₃.

Attempted Reaction of η^{5} -C₅H₅Fe(CO)₂C(CH₃)CH₂C(CN)₂C-(CN)₂CH₂ with HgCl₂. No reaction was observed by IR spectroscopy when a THF solution (10 mL) of the title iron carbonyl (0.45 g, 1.25 mmol) and HgCl₂ (0.34 g, 1.25 mmol) was stirred for 24 h at 25 °C. The solution was then saturated with HgCl₂ and stirred for an additional 3 h. Still no reaction was noted.

Attempted Reaction of η^5 -C₅H₅Fe(CO)₂CH₃ with CH₃HgCl. A THF solution (2 mL) of η^5 -C₅H₅Fe(CO)₂CH₃ (0.34 g, 1.8 mmol) and CH₃HgCl (0.41 g, 1.6 mmol) was stored in a stoppered flask for 48 h at 25 °C. No (CH₃)₂Hg, η^5 -C₅H₅Fe(CO)₂Cl, or any other products were detected by ¹H NMR spectroscopy.

Attempted Reactions of η^5 -C₅H₅Fe(CO)₂Cl and η^5 -C₅H₅Fe-(CO)₂HgCl with HgCl₂. Neither of the iron carbonyls (~1.2 mmol) was found by IR spectroscopy to react with HgCl₂ (5 mmol) in THF (25 mL) in 24 h at 25 °C.

Kinetic Measurements. A. By Infrared Spectroscopy. Rates of the cleavage reactions were for the most part determined by following the disappearance of the lower frequency CO stretching absorption, ν_{as} (C=O), of the η^5 -C₅H₅Fe(CO)₂R on a Beckman Model IR-9 spectrophotometer using 0.05-mm CaF₂ solution cells. In some cases, the disappearance of the higher frequency CO stretching band, $\nu_{s}(C \equiv O)$, of the η^{5} -C₅H₅Fe(CO)₂X product was also monitored for an independent check. Recrystallized HgCl2 was found to react with η^5 -C₅H₅Fe(CO)₂CH₃ at the same rate as reagent grade HgCl₂; in view of this observation no further purification of any HgX2 was carried out. Solutions of HgX₂ and η^5 -C₅H₅Fe(CO)₂R were prepared in a drybox, mixed there, and then placed in a thermostated bath (± 0.1) °C) where they were magnetically stirred. Samples of these reaction solutions were periodically withdrawn with a syringe and transferred to the CaF₂ cell for a single measurement of the absorbance of the appropriate $\nu(C \equiv O)$. The faster reactions were followed by syringing freshly prepared solution mixtures directly into the IR cell for periodic measurements. The instrument room was maintained at 25 ± 1 °C and care was exercised not to leave the solution cell in the IR beam between the measurements.

All reactions were run under pseudo-first-order conditions, with the concentration of HgX₂, generally 0.02-0.20 M, in at least tenfold excess of that of the iron complex. In the slower reactions, higher [HgX₂] was sometimes employed. Most of the cleavage reactions were followed for at least 3 half-lives; however, the slower ones and those yielding η^5 -C₅H₅Fe(CO)₂HgX could be monitored only for up to 2 half-lives. This is because the increasing concentration of η^5 -C₅H₅Fe(CO)₂HgX causes its ν_{as} (C=O) band at ca. 1960 cm⁻¹ eventually to contribute to the intensity of the monitored ν_{as} (C=O) absorption of the η^5 -C₅H₅Fe(CO)₂R. When solutions in THF were prepared at 25 °C and then thermostated at a different temperature for kinetic runs, a correction in the concentration of reactants was made by taking into account the density change of the solvent.

Beer's law was found to hold for the $\nu_{as}(C=O)$ absorption of η^5 -C₅H₅Fe(CO)₂R, where R = CH₃, C₂H₅, CH(CH₃)₂, and CH₂C(CH₃)₃, in the concentration range 2×10^{-3} to 5×10^{-2} M in THF. It was assumed also to be valid for the other iron-alkyl and -aryl complexes studied. Pseudo-first-order rate constants, k_{obsd} , were obtained by plotting $-\ln (A - A_{\infty})$ vs. time, where A is the absorbance at any time of the reaction and A_{∞} is the absorbance at infinite time. As all of the cleavages were found to proceed to completion, A_{∞} is zero. Rate constants are reproducible to $\pm 5\%$ except as noted in the tables.

By ¹H NMR Spectroscopy. The reaction between B. η^5 -C₅H₅Fe(CO)₂CH₃ and HgCl₂ in THF was also followed by ¹H NMR spectroscopy in order to obtain directly the dependence of the rate on the concentration of HgCl₂. A tenfold excess of alkyl complex $(\sim 1 \text{ M})$ over HgCl₂ was employed and the cleavage was monitored in a sealed NMR tube at 25 ± 2 °C for 2-3 half-lives on a Varian Associates A-60A instrument. No decomposition or precipitation was observed in this time. The reactant and product concentrations were obtained from the relative integrated peak areas of the η^5 -C₅H₅ resonances of the alkyl complex (τ 5.20) and η^5 -C₅H₅Fe(CO)₂Cl (τ 4.88). Each peak area was calculated from the average of at least four integrations. The individual integrations were reproducible to better than 5%. The average integrated area of the two peaks combined remained constant $(\pm 2\%)$ throughout the reaction. The area of the peak at τ 5.20 required a correction (~4%) because of overlap with the ¹³C

satellite of the proton resonance of the α -CH₂ group of the THF. The concentration of HgCl₂ remaining at any time was determined by taking the quantity of HgCl₂ consumed to be equal to the amount of η^{5} -C₅H₅Fe(CO)₂Cl formed.

Results

Stoichiometry and Products. Cleavage reactions of the organoiron complexes η^{5} -C₅H₅Fe(CO)₂R with HgX₂ (X = Cl, Br, or I) proceed according to the equations

$$\eta^{5}$$
-C₅H₅Fe(CO)₂R + HgX₂
 $\rightarrow \eta^{5}$ -C₅H₅Fe(CO)₂X + RHgX (1)

$$\eta^{5}$$
-C₅H₅Fe(CO)₂R + HgX₂
 $\rightarrow \eta^{5}$ -C₅H₅Fe(CO)₂HgX + RX (2)

 η^5 -C₅H₅Fe(CO)₂R + HgX₂

$$+ C_5H_6 + RX + other organic products + 2CO$$
 (3)

Infrared spectrophotometric titrations of representative iron alkyls (R = CH₃, CH(CH₃)₂, and C(CH₃)₃) with HgCl₂ yielded end points corresponding to the consumption of the reactants in a 1:1 molar ratio. Further evidence for this stoichiometry was provided by the isolation of RHgX, η^{5} -C₅H₅Fe(CO)₂X, η^{5} -C₅H₅Fe(CO)₂HgX, and Hg₂X₂ in yields exceeding 90%. The formation of RX in eq 2 and of the organic products in eq 3 was ascertained qualitatively, but not measured to determine the stoichiometry.

Many of the η^5 -C₅H₅Fe(CO)₂R complexes examined were found to react by more than one path (i.e., eq 1-3), but generally one path predominated (>95%). A trace amount of Hg₂Cl₂, indicative of path 3, was often observed as one of the products in those reactions of HgCl₂ where the main path was either 1 or 2. The course of reaction between η^5 -C₅H₅Fe-(CO)₂R and HgX₂ was found to depend markedly on the ligand R, but to be essentially invariant to the solvent and the halide X. Neither [η^5 -C₅H₅Fe(CO)₂]₂ nor elemental mercury was observed in any of these reactions.

The methyl and the primary alkyl complexes were found with one exception to react mainly (>95%) according to eq 1. The reaction of η^{5} -C₅H₅Fe(CO)₂CH₂C(CH₃)₃ with HgCl₂ proceeds via both pathways 1 and 3, with path 1 dominating at higher concentrations of HgCl₂ ($\gtrsim 0.5$ M). No reactivity according to eq 2 was observed for any of the primary alkyliron complexes. The benzyl complex, η^{5} -C₅H₅Fe(CO)₂CH₂C₆H₅, undergoes cleavage to a significant extent by both paths 1 and 2, with path 1 being the principal reaction course for [HgCl₂] < 0.3 M in isopropyl alcohol and for [HgCl₂] < 1.0 M in THF.

The secondary and tertiary alkyliron complexes η^5 -C₅H₅Fe(CO)₂CH(CH₃)C₆H₅ and η^5 -C₅H₅Fe(C-O)₂C(CH₃)₃, respectively, react mainly (>95%) by eq 2. There occurs also a slight amount of reaction 3, but no detectable reaction 1. Another tertiary alkyl complex, η^5 -C₅H₅Fe(C-O)₂C(CH₃)CH₂C(CN)₂C(CN)₂CH₂, resists cleavage by HgCl₂ in THF at 25 °C.

The most complex behavior was displayed by the isopropyl complex, which undergoes cleavage by all three pathways. Path 3 dominates at low concentrations of HgCl₂ and with low molar ratios HgCl₂/ η^5 -C₅H₅Fe(CO)₂CH(CH₃)₂; paths 1 and 2 gain importance at higher concentrations of HgCl₂ and higher molar ratios HgCl₂/ η^5 -C₅H₅Fe(CO)₂CH(CH₃)₂, path 2 significantly and path 1 to a lesser extent. Summarized below are the results. All reactions were run in 25 mL of THF at 25 °C (Table I).

The aryliron complexes ($R = C_6H_5$, $p-C_6H_4OCH_3$, and $p-C_6H_4Cl$) cleave mainly according to eq 1. Some reactivity (<5%) along path 2 was observed when $R = C_6H_5$ and $p-C_6H_4OCH_3$, with the latter aryl complex also displaying a

η^{5} -C ₅ H ₅ Fe(CO) ₂ CH(CH ₃) ₂ , g (mmol)	HgCl ₂ , g (mmol)	Reaction time	η^5 -C ₅ H ₅ Fe(CO) ₂ HgCl, %	η^{5} -C ₅ H ₅ Fe(CO) ₂ Cl, %
0.053 (0.24)	0.68 (2.5)	2 weeks	$2 \pm < 1$	<1
0.28 (1.29) 0.14 (0.64)	3.94 (14.5) 5.53 (20.4)	24 h 24 h	8 ± 1 19 ± 1	3 ± 1 4 ± 1

Table II. Kinetic Data for the Reactions of η^5 -C₅H₅Fe(CO)₂R with HgCl₂^a at 25 °C

R	Solvent	Reaction path ^b	Taft σ* ^c	$\sigma^{+ d}$	$k_{2}, M^{-1} s^{-1}$	k ₃ , M ⁻² s ⁻¹	Rel k ₃	ν(C≡O), cm ⁻¹ e
C(CH ₃) ₃	THF	2	-0.30			9.3×10^{-3}	5500	1996, 1938
CH ₂ Si(CH ₃) ₃	THF	1	-0.26			1.6×10^{-3}	940	2004, 1948
CH(CH ₃)C ₆ H ₅	THF	2	0 .11 ^f			1.2×10^{-3}	710	2001, 1945
CH ₃	THF	1	0.00			4.6×10^{-4}	270	2005, 1948
$CH_2C(CH_3)_3$	THF	1,3	-0.16		$1.0 \times 10^{-4} g$	$1.1 \times 10^{-4} g$	65	1999, 1940.5
C_2H_5	THF	1	-0.10			7.1×10^{-5}	42	2000, 1942
CH ₂ CH ₂ C (CH ₃) ₃	THF	1				5.9×10^{-5}	35	2000, 1942.5
CH ₂ CH ₂ C ₆ H ₅	THF	1	0.08			$7.4 \times 10^{-5} (3.7 \times 10^{-5})^{h}$	44 (22) ^h	2002, 1944
CH(CH ₃) ₂	THF	3, 2	-0.19		4.3×10^{-5}	1×10^{-5} i	6	1998, 1940
p-C ₆ H ₄ OCH ₃	THF	1		-0.78		$1.1 \times 10^{-5} (5.5 \times 10^{-6})^{h}$	6 (3) ^h	2014, 1958
CH ₂ C ₆ H ₅	THF	1,2	0.22			$3.4 \times 10^{-6j} (1.7 \times 10^{-6})^{h}$	$2(1)^{h}$	2004, 1949
$p-C_6H_4OCH_3$	i-C ₃ H ₇ OH	1		-0.78		4.9×10^{-3}	2900	2018, 1966
CH ₂ C ₆ H ₅	i-C ₃ H ₇ OH	1,2	0.22			3.2×10^{-3}	1900	2010, 1956
C ₆ H ₅	i-C ₃ H ₇ OH	1	0.60	0.00		6.7×10^{-4} k	390	2019, 1967
p-C ₆ H ₄ Cl	i-C ₃ H ₇ OH	1		0.11		3.8×10^{-4}	220	2022.5, 1970

^{*a*} 0.02-0.20 M unless noted otherwise. ^{*b*} Minor reaction paths are excluded; see text. ^{*c*} From J. Hine, "Physical Organic Chemistry", 2nd ed, McGraw-Hill, New York, N.Y., 1962, p 97, except as noted. ^{*d*} From H. C. Brown and Y. Okamoto, *J. Am. Chem. Soc.*, **80**, 4979 (1958). ^{*c*} Measured in the solvent indicated. ^{*f*} From R. W. Taft, Jr., "Steric Effects in Organic Chemistry", M. S. Newman, Ed., Wiley, New York, N.Y., 1956, Chapter 13. ^{*g*} $\pm 0.2 \times 10^{-4}$. ^{*h*} Adjusted rate constant to compensate for the high (0.67 M) concentration of HgCl₂; see text. ^{*i*} $\pm 0.5 \times 10^{-5}$. ^{*j*} $\pm 0.8 \times 10^{-6}$. ^{*k*} $\pm 0.4 \times 10^{-4}$. ^{*i*} $\pm 0.3 \times 10^{-4}$.

trace of reaction 3. No evidence of either reaction 2 or 3 was found when $R = p \cdot C_6 H_4 Cl$.

The chromium complex η^5 -C₅H₅Cr(NO)₂CH₃ appears to demethylate exclusively as its iron analogue in eq 1.

Kinetic Determinations. The rate constants for the cleavage reactions of η^5 -C₅H₅Fe(CO)₂R with HgCl₂ at 25 °C are presented in Table II, with the principal reaction path(s) for each complex also given. All reactions were found to obey the rate expression

$$-\frac{d[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}R]}{dt} = k_{obsd}[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}R] \quad (4)$$

where $k_{obsd} = k[HgCl_2]^n$, giving good linear plots of $-\ln A$ vs. time. No induction period was observed for any of the reactions. Plots of $\ln k_{obsd}$ vs. $\ln [HgCl_2]$ for the cleavage according to paths 1 and 2 of representative complexes in THF (R = CH₃ and C(CH₃)₃) and in isopropyl alcohol (R = p-C₆H₄OCH₃) afforded straight lines with the slope (2.02, 2.09, and 2.14, respectively) equal to the order of the reaction in HgCl₂, *n*. These plots are given in Figure 1. The cleavage of the R = CH₃ and C(CH₃)₃ complexes by HgBr₂ and HgI₂ showed the same second-order dependence on HgX₂, as did several other less thoroughly studied reactions of η^5 -C₅H₅Fe(CO)₂R with HgCl₂. Thus the kinetics of both reactions 1 and 2 are consistent with the rate expression

$$-\frac{d[\eta^{5} - C_{5}H_{5}Fe(CO)_{2}R]}{dt}$$

= $k_{3}[\eta^{5} - C_{5}H_{5}Fe(CO)_{2}R][HgX_{2}]^{2}$ (5)

The dependence of k_3 on temperature was determined for the reactions of η^5 -C₅H₅Fe(CO)₂CH₃ with HgCl₂ at 15.0-40.0 °C and η^5 -C₅H₅Fe(CO)₂C(CH₃)₃ with HgCl₂ at 10.0-40.0 °C, both in THF. The activation parameters are

Figure 1. Plots of $\ln k_{obsd}$ vs. $\ln [HgCl_2]$ for the reactions of η^5 -C₅H₅Fe-(CO)₂R with ca. tenfold excess of HgCl₂ in THF (R = CH₃, CH(CH₃)₂, and C(CH₃)₃) or isopropyl alcohol (R = *p*-C₆H₄OCH₃) at 25 °C. *n* is the slope.

 $\Delta H^{\ddagger} = 16.6 \pm 1.1 \text{ kcal/mol and } \Delta S^{\ddagger} = -18 \pm 4 \text{ eu for the}$ former and $\Delta H^{\ddagger} = 15.7 \pm 1.0 \text{ kcal/mol and } \Delta S^{\ddagger} = -15 \pm 3$ eu for the latter.

A general phenomenon observed for reactions 1 and 2 is a gradual small increase in the rate constant with increasing concentration of either η^5 -C₅H₅Fe(CO)₂R or HgX₂ above ca. 0.20-0.25 M. The extent of this increase appears to be independent of the nature of the organoiron complex; e.g., the values of k_3 for the cleavage of the R = CH₃, C₂H₅, and CH₂CH₂C(CH₃)₃ complexes in THF increase identically as the concentration of HgCl₂ (>0.20 M) increases. However,

Dizikes, Wojcicki / Elimination from η^5 -C₅H₅Fe(CO)₂R Complexes

the increase is dependent on the reaction path. Path 2 reactions are affected somewhat more than path 1 reactions. When $[HgCl_2] = 0.67$ M, the calculated k_3 for each of these path 1 reactions was twice that when $[HgCl_2] \le 0.20$ M. For the reaction of η^5 -C₅H₅Fe(CO)₂CH₃ (~1 M) with HgCl₂ (~0.1 M) followed by ¹H NMR spectroscopy both an excellent secondorder dependence on HgCl₂ and a similar rate enhancement to that found for high [HgCl₂] were noted (vide infra). For the above reasons and because of the failure of HgCl₂ to show any measurable aggregation at concentrations up to 0.15 M (vide supra), we believe that this increase in the rate constant results from a change in the nature of the medium owing to the high concentration of reactants.52 For kinetic runs carried out with 0.67 M HgCl₂, the rate constants obtained from eq 5 are reported as such, and rate constants adjusted by half are given in parentheses in Table II. They are thought to provide a more meaningful comparison with the data obtained at the lower concentrations of HgCl₂ than do the unadjusted rate constants.

In contrast to the reactions that proceed mainly by eq 1 or 2, the cleavage of η^5 -C₅H₅Fe(CO)₂CH(CH₃)₂ by HgCl₂ in THF (eq 3) gives a ln k_{obsd} vs. ln [HgCl₂] plot whose slope equals 0.96 (Figure 1), indicative of the rate expression

$$\frac{d[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}CH(CH_{3})_{2}]}{dt}$$

= $k_{2}[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}CH(CH_{3})_{2}][HgCl_{2}]$ (6)

The stoichiometry of the cleavage of η^5 -C₅H₅Fe(C-O)₂CH(CH₃)₂ by HgCl₂ is complicated by the occurrence of two major competing reaction paths. To circumvent this difficulty, the kinetic runs were made using [HgCl₂] < 0.20 M. Under these conditions path 3 completely dominates and good overall second-order kinetics were observed. The third-order rate constant, k_3 , for the competing reaction 2 was computed by making use of the experimentally determined yield of η^5 -C₅H₅Fe(CO)₂HgCl and the previously obtained rate constant k_2 for the dominant reaction 3, and by assuming that reaction 2 is third-order overall as found for the cleavage of η^5 -C₅H₅Fe(CO)₂R, where R = C(CH₃)₃ and CH(CH₃)C₆H₅. The rate constants k_2 and k_3 for the main reaction paths of η^5 -C₅H₅Fe(CO)₂CH₂C(CH₃)₃ with HgCl₂ were calculated in a similar manner.

For η^5 -C₅H₅Fe(CO)₂CH₂C₆H₅ the separate rate constants for the two competing pathways 1 and 2 could not be obtained. The k_3 given in Table II is a measure of the cleavage of this complex by both pathways combined.

The η^5 -indenyl complex η^5 -C₉H₇Fe(CO)₂CH₂C₆H₅ reacts with HgCl₂ in THF some 20 times faster than does η^5 -C₅H₅Fe(CO)₂CH₂C₆H₅. The reaction yields η^5 -C₉H₇Fe(CO)₂Cl and is first order in η^5 -C₉H₇Fe(C-O)₂CH₂C₆H₅, with $k_{obsd} = 3.2 \times 10^{-5} \text{ s}^{-1}$ when [HgCl₂] = 0.67 M.

The cleavage of η^5 -C₅H₅Cr(NO)₂CH₃ by HgCl₂ in THF at 25 °C proceeds too rapidly to be measured by the techniques employed here.

The reaction of excess η^5 -C₅H₅Fe(CO)₂CH₃ with HgCl₂ in THF monitored by ¹H NMR spectroscopy gave linear plots of $1/[HgCl_2]_l$ vs. time, revealing a clear second-order dependence on HgCl₂ in accord with the rate law

$$-\frac{d[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}CH_{3}]}{dt} = k'_{obsd}[HgCl_{2}]^{2}$$
(7)

where $k'_{obsd} = k_3[\eta^5 \cdot C_5 H_5 Fe(CO)_2 CH_3]$. A third-order rate constant, k_3 , of $(1.0 \pm 0.1) \times 10^{-3} M^{-2} s^{-1}$ was obtained at 25 °C. No formation of $(CH_3)_2$ Hg or of any intermediate was observed.

The rate constants k_3 for the reaction of η^5 -C₅H₅Fe(C-O)₂C(CH₃)₃ and η^5 -C₅H₅Fe(CO)₂CH₃ with HgX₂ (X = Cl,

Table III. Rate Data for the Reactions of η^5 -C₅H₅Fe(CO)₂R with HgX₂ in THF at 25 °C

R	x	Reaction path ^a	$k_3, M^{-2} s^{-1}$	Rel k_3^b
C(CH ₃) ₃ CH ₃	Cl Br I Cl Br I	2 2 1 1 1	$9.3 \times 10^{-3} 3.2 \times 10^{-2} 1.4 \times 10^{-2} c 4.6 \times 10^{-4} 3.6 \times 10^{-4} d 1.7 \times 10^{-5} e$	1.0 3.4 1.5 27 21 1

^{*a*} Minor reaction paths are excluded; see text. ^{*b*} Different reference k_3 for each alkyliron complex. ^{*c*} $\pm 0.5 \times 10^{-2}$. ^{*d*} $\pm 0.3 \times 10^{-4}$. ^{*e*} $\pm 0.3 \times 10^{-5}$.

Br, or I) in THF at 25 °C are furnished in Table III. Little variation of k_3 with X was found for the cleavage of the *tert*butyl complex, the reactivity order being X = Br > I > CI. For the methyl complex the reaction with HgI₂ was markedly slower than that with either HgBr₂ or HgCl₂, the dependence on X being Cl > Br \gg I. The less extensively studied reactions of η^5 -C₅H₅Fe(CO)₂CH₂CH₂C₆H₅ with HgX₂ showed the same variation of the rate constant with X as those of its methyl analogue, i.e., X = Cl > Br \gg I.

The rate data for the cleavage of the η^5 -C₅H₅Fe(CO)₂R (R = C(CH₃)₃, CH(CH₃)₂, and CH₃) by HgCl₂ in THF at 25 °C in the presence of added salt are summarized in Table IV. Whereas all three reactions showed a positive salt effect with added NH₄PF₆, only the reaction of η^5 -C₅H₅Fe(C-O)₂C(CH₃)₃ showed an increase in rate with added LiCl.

Within experimental error, equal rate constants were obtained for the cleavage of η^5 -C₅H₅Fe(CO)₂CH₃ and η^5 -C₅H₅Fe(CO)₂CD₃ of comparable concentrations by 0.5 M HgCl₂ in THF solution at 25 °C.

Addition of equimolar amounts of 2,2-diphenyl-1-picrylhydrazyl, hydroquinone, or galvinoxyl to THF solutions of η^5 -C₅H₅Fe(CO)₂CH(CH₃)₂ and HgCl₂ (excess) at 25 °C does not affect the rate of the cleavage and causes no induction period.

Stereochemistry. The cleavage of the Fe-C σ bond of $(+)_{546}$ - η^5 -C₅H₅Fe(CO)₂*CH(CH₃)C₆H₅ by a slight excess of HgCl₂ in acetone at 25 °C proceeds according to eq 2 with complete racemization at the secondary, α -carbon atom. The organic product, α -methylbenzyl chloride, is known⁵³ to be configurationally stable when present alone in acetone at 25 °C, but to undergo racemization in the presence of HgCl₂. However, the rate of this HgCl₂-promoted racemization of $C_6H_5(CH_3)CHCl$ is much too slow to account for the lack of optical activity of the sample isolated from the reaction of the organoiron complex with HgCl₂. For comparison, when the concentrations of C₆H₅(CH₃)CHCl and HgCl₂ are 0.05 and 0.393 M, respectively, Satchell⁵³ finds a k_{obsd} of 1.26×10^{-4} s^{-1} ($t_{1/2} \sim 1.6$ h) for the racemization of the organic chloride at 25 °C. In our cleavage experiment, where $k_{obsd} = 1 \times 10^{-2}$ s^{-1} , the initial concentration of the reacting HgCl₂ was ca. 0.12 M, and the reaction was run for ca. 1 h at 25 °C. Thus the isolated $C_6H_5(CH_3)CHCl$ would have been substantially optically active if the scission of the Fe-C σ bond were reasonably stereospecific.

The observed lack of stereospecificity of the cleavage of η^5 -C₅H₅Fe(CO)₂*CH(CH₃)C₆H₅ contrasts with the retention of configuration at the α carbon in the reactions of η^5 -C₅H₅Fe(CO)₂CHDCHDC(CH₃)₃⁶ and η^5 -C₅H₅Fe(C-O)₂CHDCHDC₆H₅⁷ with HgCl₂, which proceed according to eq 1.

Discussion

Inspection of the data in Table II reveals that the rate constants for the cleavage generally decrease as the Taft polar substituent constant, σ^* , of the group R becomes more positive. This points to the electrophilic nature of the cleavage process. Further support for an electrophilic interaction of HgX₂ with η^5 -C₅H₅Fe(CO)₂R is found in the decrease of the rate constant for the cleavage of the aryl complexes as a function of increasing σ^+ of the group R. A plot of log (k_3/k_{3_0}) vs. σ^+ , shown in Figure 2, gives a linear correlation (r = 0.995) and reveals very low sensitivity of the reaction to substituent effects, with ρ being -1.19. This may be compared with a ρ of -4.3 for the SO₂ insertion reaction of these iron-aryl complexes,¹⁷ and a ρ of -6.3 for the reactions of p-XC₆H₄Co(dmgH)₂(H₂O) (dmgH = dimethylglyoximato) with mercury(II) ion in H₂O to yield p-XC₆H₄Hg⁺ and Co(dmgH)₂(H₂O)₂.²⁵ The correlation with σ is not as good (r = 0.966).

A relationship seems to exist between k_3 and $\nu(C \equiv 0)$ for the primary alkyl complexes that cleave via path 1, although the numbers compared span narrow ranges. The observed order of the rate constants, $R = CH_2Si(CH_3)_3 > CH_2C(CH_3)_3 > C_2H_5 > CH_2CH_2C(CH_3)_3 > CH_2CH_2C_6H_5 \gg CH_2C_6H_5$, parallels, with the exception of $R = CH_2Si(CH_3)_3$, the decrease in the carbonyl stretching frequencies of these complexes. The change in the frequencies is in the same direction as the progressively more negative values of σ^* . These trends indicate that the relative amount of electron density at the iron atom seems to influence the rate of the reactions proceeding by path 1.

In line with the above finding is the observed very fast cleavage of η^5 -C₅H₅Cr(NO)₂CH₃ compared to that of the isoelectronic η^5 -C₅H₅Fe(CO)₂CH₃. This may result from the lower formal oxidation state of chromium(0) than of iron(II) and is entirely consistent with the electrophilic nature of the reaction.

Steric effects appear to be less important than electronic effects in reactions proceeding by path 1, although the small size of the CH₃ group may well account for its relatively rapid cleavage. Among the primary alkyl complexes, the two that react fastest are those with the bulkiest R groups, $CH_2Si(CH_3)_3$ and $CH_2C(CH_3)_3$. This may be contrasted with the SO₂ insertion, where the iron alkyls with large R groups generally react at reduced rates.¹⁷

The rate constants for reaction 1 are influenced by the nature of X in HgX₂. The general order of reactivity toward a given alkyl complex, $X = Cl > Br \gg I$, reflects the relative electrophilicities of these mercury(II) halides.

The cleavage according to path 2 is rather unexpected and, to our knowledge, completely unprecedented.53a Organoiron complexes with good electron releasing groups, $R = C(CH_3)_3$ $(\sigma^* = -0.30)$ and CH(CH₃)₂ ($\sigma^* = -0.19$), as well as those with poor electron releasing groups, $R = CH(CH_3)C_6H_5$ (σ^* = 0.11) and CH₂CH=CHCH₃⁵⁴ (σ^* = 0.13), react at varying but generally rapid rates via eq 2. The relative rate of the cleavage of η^5 -C₅H₅Fe(CO)₂C(CH₃)₃ by HgX₂ differs strikingly from that of its insertion of SO₂. When compared with the corresponding reactions of other η^5 -C₅H₅Fe(CO)₂R alkyls, the former is the fastest (cf. Table II) and the latter is one of the slowest.¹⁷ It may seem surprising that η^5 -C₅H₅Fe(CO)₂C(CH₃)₃ with its bulky *tert*-butyl group blocking both frontside and particularly backside attack at the Fe-C bond should be cleaved so readily. However, it is also to be noted that the size of the dissociating R alone cannot be a major rate enhancing factor as evidenced by the lack of observable reaction between $\eta^5 - C_5 H_5 Fe(C-$ O)₂C(CH₃)CH₂C(CN)₂C(CN)₂CH₂ and HgCl₂. This unreactivity may be a result of the poor electron releasing ability of the substituted cyclopentyl group, which is suggested by the high ν (C=O) (2012 and 1958 cm⁻¹ in THF solution) of its complex. An important feature of the complexes reacting by path 2 appears to be the presence of the ligand R that can dissociate off to generate a relatively stable carbonium ion, R⁺.

Figure 2. Plot of log (k_3/k_{30}) vs. σ^+ for the reactions of some aryl complexes η^5 -C₅H₅Fe(CO)₂R with HgCl₂ in THF at 25 °C.

Thus, for example, the complex with $R = CH(CH_3)C_6H_5$ is over 100 times as reactive toward HgCl₂ as that with $R = CH(CH_3)_2$, even though the alkyl group in the latter is a better electron donor. Furthermore, the benzyl complex reacts in part by path 2, as do, to a much lesser extent, the aryl complexes with $R = p - C_6H_4OCH_3$ and C_6H_5 , but not that with $R = p - C_6H_4CI$. None of the primary alkyl complexes investigated cleave by this route.

Reaction 3 appears to be a redox process which affords Hg_2Cl_2 and products derived from decomposition of the oxidized η^{5} -C₅H₃Fe(CO)₂R. Such behavior is not completely unexpected, since iron complexes of this formula are known to undergo oxidation.⁵⁵ The redox reaction 3 is quite common, usually occurring to a slight extent along with the cleavages by paths 1 and 2, and seems to be promoted by good electron releasing groups R. Thus, for example, the complexes with R = CH₂C(CH₃)₃ and CH(CH₃)₂ react with HgCl₂ to a major extent via eq 3. The absence of an induction period, the failure of radical inhibitors to slow the rate or to trap any reaction species, and the lack of evidence for the formation of $[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}]_{2}$ all argue against a radical chain mechanism for this path.

A reasonable mechanism of these cleavage reactions is presented in Scheme I. The initial step in all three pathways is thought to be electrophilic attack of mercury at the electron-rich iron atom, leading to the formation of 1, which is in equilibrium with the reactants. As no intermediates have been observed by either infrared or ¹H NMR spectroscopy, the equilibrium constant K_1 must be small. The formation of 1 would be favored by good electron-releasing groups R; also, as attack is at the iron atom rather than the Fe-C bond, steric inhibition by bulky ligands R will be of secondary importance and the low value of ρ is not unexpected.

Evidence for 1:1 adducts between iron-alkyl complexes and HgX_2 in equilibrium with the reactants is provided by a recent stereochemical study.¹⁵ It was demonstrated that the diastereomers of $(\eta^{5}-1-CH_3-3-C_6H_5C_5H_3)Fe(CO)[P(C_6H_5)_3]CH_3$ undergo partial epimerization at iron in the course of their cleavage by a deficiency of HgI_2 . The observed epimerization was ascribed to the formation of 1:1 adducts analogous to 1 or 2, which undergo an intramolecular ligand scrambling before dissociation into reactants.

The intermediate 1 can revert to reactants or undergo one of two further processes. It can decompose by an internal redox reaction (path 3) with the formation of Hg_2X_2 (k' sequence) or it can interact with another molecule of HgX_2 to yield 2. In

Table IV. Rate Data for the Reactions of η^5 -C₅H₅Fe(CO)₂R with HgCl₂ in the Presence of Added Salt in THF at 25 °C^{*a*}

R	Salt	Reaction path ^b	$k_{\rm obsd}$, s ⁻¹	$\Delta k_{\rm obsd}$
C(CH ₃) ₃		2	9.3 × 10 ^{−5}	
(5/5	NH ₄ PF ₆	2	1.7×10^{-4}	85
	LiCl	2	1.6×10^{-4}	74
$CH(CH_3)_2$		3	4.3×10^{-6}	
	NH₄PF6	3	6.9×10^{-6}	60
	LiCl	3	3.1×10^{-6}	-28
CH3		1	4.6×10^{-6}	
	NH ₄ PF ₆	1	7.2×10^{-6}	56
	LiCl	1	4.1×10^{-6}	-11

^{*a*} 0.1 M HgCl₂, 0.01 M η^{5} -C₅H₅Fe(CO)₂R, and 0.01 M salt. ^{*b*} Minor reaction paths are excluded; see text. ^{*c*} Relative to reaction without added salt.

Scheme I $\eta^{5} \cdot C_{s} H_{s}(CO)_{2} FeR + HgX_{2} \xrightarrow{K_{1}} \eta^{5} \cdot C_{s} H_{s}(CO)_{2} Fe \xrightarrow{HgX_{2}} R$ Path 3: $\eta^{5} \cdot C_{s} H_{s}(CO)_{2} Fe \xrightarrow{HgX_{2}} 1$ Path 3: $\eta^{5} \cdot C_{s} H_{s}(CO)_{2} Fe \xrightarrow{HgX_{2}} + [\eta^{5} \cdot C_{s} H_{s}(CO)_{2} FeR]^{+}X^{-} \downarrow fast$ RX + 2CO + other products $\eta^{5} \cdot C_{s} H_{s}(CO)_{2} Fe \xrightarrow{HgX_{2}} + HgX_{2}$ R $K_{2} = [\eta^{5} \cdot C_{s} H_{s}(CO)_{2} Fe \xrightarrow{R}]^{+} HgX_{3}^{-}$ Path 1: $[\eta^{5} \cdot C_{s} H_{s}(CO)_{2} Fe \xrightarrow{R}]^{+} HgX_{3}^{-}$ $K_{2} = [\eta^{5} \cdot C_{s} H_{s}(CO)_{2} Fe \xrightarrow{R}]^{+} HgX_{3}^{-}$ R $\eta^{5} \cdot C_{s} H_{s}(CO)_{2} Fe \xrightarrow{R}]^{+} HgX_{3}^{-}$ R $\eta^{5} \cdot C_{s} H_{s}(CO)_{2} Fe \xrightarrow{R}]^{+} HgX_{3}^{-}$ R $\eta^{5} \cdot C_{s} H_{s}(CO)_{2} FeX + HgX_{2}$ Path 2: $[\eta^{5} \cdot C_{s} H_{s}(CO)_{2} Fe \xrightarrow{R}]^{+} HgX_{3}^{-}$ R $\frac{h''}{\eta^{5}} \cdot \eta^{5} \cdot C_{s} H_{s}(CO)_{2} FeHgX + RX + HgX_{2}$

the k' sequence, cleavage of the Fe-R bond may result from nucleophilic attack by X⁻ on the α -carbon atom of R in $[\eta^5-C_5H_5Fe(CO)_2R]^{+.55}$ When R = CH(CH₃)₂ this process probably competes with β -hydride elimination to account for the formation of CH₂=CHCH₃.

The interaction of 1 with a second molecule of HgX_2 is thought to occur with abstraction of X^{-} from the coordinated HgX_2 to afford 2, which can react further via path 1 or 2. When 2 contains an R group that forms a relatively stable carbonium ion, e.g., C(CH₃)₃, CH(CH₃)C₆H₅, or allyl, dissociation of R⁺ affords the observed η^5 -C₅H₅Fe(CO)₂HgX and RX. This mechanism is supported by the isolation of racemic $C_6H_5(CH_3)$ CHCl from the reaction of optically active η^5 -C₅H₅Fe(CO)₂*CH(CH₃)C₆H₅ with HgCl₂. By contrast, if the R group does not give a stable carbonium ion, e.g., CH₃ or C₂H₅, reductive elimination of RHgX from 2 occurs instead to yield η^5 -C₅H₅Fe(CO)₂X. Such reductive elimination of RHgX should lead to retention of configuration at the α -carbon atom of R, as indeed observed by Whitesides⁶ and by Baird.⁷ The proposed mechanism for the cleavage via path 1 is also consistent with the absence of any detectable isotope effect for η^5 -C₅H₅Fe(CO)₂CH₃ vs. η^5 -C₅H₅Fe(CO)₂CD₃.

The mechanism depicted in Scheme I for the reactions according to paths 1 and 2 accommodates the observed increase in rate either upon changing the solvent from THF to isopropyl alcohol or acetone to nitrobenzene, or upon addition of NH₄PF₆. Introduction of LiCl inhibits the rate of reaction 1 probably by reducing the concentration of HgCl₂ and thus shifting the equilibria K_1 and K_2 to the left. By contrast, the rate of reaction 2 is enhanced by added LiCl. Here a factor of major importance may be the effect of the medium on the dissociation of R⁺ from **2**.

When 1 is stable with respect to decomposition via path 3 and the step k'' is rate determining, the rate law in eq 8 follows. However, when 1 decomposes by the rate determining step k'according to path 3, the rate expression in eq 9 is derived

$$\frac{d[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}R]}{dt}$$

$$=\frac{k''K_{1}K_{2}[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}R][HgX_{2}]^{2}}{1+K_{1}K_{2}[HgX_{2}]^{2}} (8)$$

$$\frac{d[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}R]}{dt}$$

$$=\frac{k'K_{1}[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}R][HgX_{2}]}{1+K_{1}[HgX_{2}]} (9)$$

The latter reaction is promoted by $k' > k''K_2$ and/or by low concentrations of HgX₂, as was observed for the η^5 -C₅H₅Fe-(CO)₂R, where R = CH(CH₃)₂ and CH₂C(CH₃)₃. If $K_1K_2[HgX_2]^2 \ll 1$ and $K_1[HgX_2] \ll 1$, eq 8 and 9 reduce to

$$\frac{d[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}R]}{dt}$$

= $k''K_{1}K_{2}[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}R][HgX_{2}]^{2}$ (10)

$$\frac{d[\eta^{5}-C_{5}H_{5}Fe(CO)_{2}R]}{dt}$$

$$= k'K_{1}[\eta^{5} \cdot C_{5}H_{5}Fe(CO)_{2}R][HgX_{2}] \quad (11)$$

where $k'K_1 = k_2$, respectively, and the observed kinetics are obtained.

Additional mechanisms may be proposed which are consistent with the observed kinetics; however, they do not fit all the data as well as does the mechanism in Scheme I. For example, the oxidation of the organoiron complexes by reaction 3 need not proceed via an Fe-Hg intermediate such as 1; it may be occurring by an electron transfer process through ligand or solvent which is independent of paths 1 and 2. However, in such a case reaction 3 might be expected to occur exclusively of reactions 1 or 2 for some complexes. This was not observed. Furthermore, the extent of occurrence of reaction 3 as compared to reactions 1 and 2 is not affected by the use of more polar solvents; nor does reaction 3 exhibit a substantially different salt effect (Table IV).⁵⁶

The second-order dependence on HgX₂ for paths 1 and 2, the rate variations with ligand R, and the stereochemical results may all be accounted for alternatively by assuming the formation of the ion pair HgX⁺HgX₃⁻ and its subsequent reaction with η^5 -C₃H₅Fe(CO)₂R to form 2 as depicted in Scheme II. Although molecular weight and conductivity Scheme II

$$2 HgX_{2} \stackrel{K_{1}'}{\longrightarrow} HgX^{*}HgX_{3}^{-}$$
$$\eta^{5} - C_{5} H_{5} (CO)_{2} FeR + HgX^{*}HgX_{3}^{-}$$
$$\stackrel{K_{2}'}{\longleftarrow} [\eta^{5} - C_{5} H_{5} (CO)_{2} Fe \stackrel{HgX}{\underset{R}{\longrightarrow}}]^{*}HgX_{3}^{-}$$
$$2$$

Journal of the American Chemical Society / 99:16 / August 3, 1977

studies on solutions of HgCl₂ in THF provide no evidence for the presence of HgCl⁺HgCl₃⁻, such a species may occur in low concentration and exhibit very high reactivity.57 Notwithstanding these possibilities, we favor the mechanism in Scheme I, since it provides a more unified explanation of the first- and second-order dependence of these reactions on HgX_2 . It is also in agreement with the report⁵⁸ of stepwise interaction of HgX₂ with metal carbonyl complexes.

In conclusion we wish to point out that electrophilic addition of HgX₂ to transition metals in low oxidation states is a well documented process.⁵⁹⁻⁶¹ The proposed interaction of HgX₂ with the iron atom in η^5 -C₅H₅Fe(CO)₂R may be regarded as representing the same type of reaction. We would expect it to occur in those alkyl or aryl complexes where the metal possesses filled valence orbitals available for bonding and is open to attack by the sterically demanding HgX2. Such complexes may include $M(CO)_5 R^{62}$ and various $M(CO)_{5-x} L_x R$ (M = or Re), η^5 -C₅H₅Ni(PR'₃)R, and possibly Mn η^5 -C₅H₅M(CO)₃R (M = Mo or W), to mention a few. However, in alkylcobalamins and alkylcobaloximes, where the ligands protect the metal from external attack, electrophilic interaction of mercury(II) with the α -carbon atom of R appears to occur instead.²² A similar point of attack by mercury(II) has been proposed²⁹ for the dealkylation of $Cr(H_2O)_5R^{2+}$, where interaction between the two metals would be impeded by the charge on the alkyl complex and the electronic configuration of chromium(III).

Very recently Slack and Baird⁸ have applied orbital symmetry and energy considerations to reactions of d¹-d⁹ transition metal-alkyl complexes, including η^5 -C₅H₅Fe(CO)₂CH₃. Taking the nonbonding d orbitals in these compounds to lie at higher energy than the filled bonding orbitals,⁶³ they predict that electrophilic metal-carbon bond scission reactions will normally involve initial oxidation of the metal. Our proposal of electrophilic attack of HgX₂ at the iron in η^5 -C₅H₅Fe- $(CO)_2R$ is in complete accord with their prediction.

Acknowledgments. The authors gratefully acknowledge financial support of this research by the National Science Foundation. A.W. also acknowledges a Fellowship from the John Simon Guggenheim Memorial Foundation.

References and Notes

- (1) Presented in part as a session lecture at the 7th International Conference
- on Organometallic Chemistry, Venice, Italy, Sep 1–5, 1975. A Wojcicki, Adv. Organomet. Chem., 11, 87 (1973).
- (3) G. W. Parshall and J. J. Mrowca, Adv. Organomet. Chem., 7, 157 (1) G. W. Paistali and S. S. MIOWCA, ADV. Organomet. Chem., 7, 137 (1968).
 (4) M. C. Baird, *J. Organomet. Chem.*, 64, 289 (1974).
 (5) P. L. Bock, D. G. Boschetto, J. R. Rasmussen, J. P. Demers, and G. M.
- Whitesides, J. Am. Chem. Soc., 96, 2814 (1974).
- (6) P. L. Bock and G. M. Whitesides, J. Am. Chem. Soc., 96, 2826 (1974).
- D. Slack and M. C. Baird, J. Chem. Soc., Chem. Commun., 701 (1974).
 D. A. Slack and M. C. Baird, J. Am. Chem. Soc., 98, 5539 (1976).
 A. Davison and D. L. Reger, J. Am. Chem. Soc., 94, 9237 (1972).

- (10) T. G. Attig, P. Reich-Rohrwig, and A. Wojcicki, J. Organomet. Chem., 51, C21 (1973).
- (11) H. Brunner and J. Strutz, Z. Naturforsch. B. 29, 446 (1974).
- (12) T. C. Flood, F. G. DiSanti, and D. L. Miles, Inorg. Chem., 15, 1910 (1976).
- (13) A. Davison and N. Martinez, J. Organomet. Chem., 74, C17 (1974).

- (13) A. Davison and N. Martinez, J. Organomet. Chem., 74, C17 (1974).
 (14) P. Reich-Rohrwig and A. Wojcicki, Inorg. Chem., 13, 2457 (1974).
 (15) T. G. Attig and A. Wojcicki, J. Am. Chem. Soc., 96, 262 (1974).
 (16) T. G. Attig and A. Wojcicki, J. Organomet. Chem., 82, 397 (1974).
 (17) S. E. Jacobson and A. Wojcicki, J. Organomet. Chem., 72, 113 (1974).
 (18) S. E. Jacobson and A. Wojcicki, J. Organomet. Chem., 72, 113 (1974).
 (19) S. E. Jacobson and A. Wojcicki, Inorg. Chim. Acta, 10, 229 (1974).
 (20) J. M. Wood, E. S. Kennedy, and C. G. Bosen, Nature (Lordon) 220, 17
- (20) J. M. Wood, F. S. Kennedy, and C. G. Rosen, Nature (London), 220, 173 (1968).
- (21) M. Tada and H. Ogawa, *Tetrahedron Lett.*, 2639 (1973).
 (22) H. L. Fritz, J. H. Espenson, D. A. Williams, and G. A. Molander, *J. Am. Chem. Soc.*, 96, 2378 (1974), and references cited therein.
- (23) D. Dodd and M. D. Johnson, J. Chem. Soc. B, 662 (1971), and references

cited therein.

- D. Dodd and M. D. Johnson, J. Chem. Soc., Perkin Trans. 2, 219 (1974). (24)(25) P. Abley, E. R. Dockal, and J. Halpern, J. Am. Chem. Soc., 95, 3166
- (1973). (26) J. H. Espenson and D. A. Williams, J. Am. Chem. Soc., 96, 1008
- (1974) (27) J. H. Espenson, W. R. Bushey, and M. E. Chmielewski, Inorg. Chem., 14. 1302 (1975)
- (28) J. H. Espenson, H. L. Fritz, R. A. Heckman, and C. Nicolini, Inorg. Chem., 15, 906 (1976).
- (29) J. P. Leslie, II, and J. H. Espenson, J. Am. Chem. Soc., 98, 4839 (1976)
- (30) L. J. Dizikes and A. Wojcicki, J. Am. Chem. Soc., 97, 2540 (1975).
- T. S. Piper and g. Wilkinson, J. Inorg. Nucl. Chem., 3, 104 (1956). (31) (32) M. L. H. Green and P. L. I. Nagy, J. Organomet. Chem., 1, 58 (1963).
- (33) W. P. Giering and M. Rosenblum, J. Organomet. Chem., 25, C71 (1970)
- (34) J. P. Bibler and A. Wojcicki, J. Am. Chem. Soc., 88, 4862 (1966).
- (35) J. J. Alexander and A. Wojcicki, Inorg. Chim. Acta, 5, 655 (1971).
- (36) R. B. King, K. H. Pannell, C. R. Bennett, and M. Ishaq, J. Organomet. Chem., 19, 327 (1969).
- (37) S. R. Su and A. Wojcicki, *Inorg. Chim. Acta*, 8, 55 (1974).
 (38) R. B. King and M. B. Bisnette, *J. Organomet. Chem.*, 2, 15 (1964).
 (39) T. S. Piper, F. A. Cotton, and G. Wilkinson, *J. Inorg. Nucl. Chem.*, 1, 165
- (1955)
- (40) M. G. Mays and J. D. Robb, J. Chem. Soc. A, 329 (1968).
 (41) A. N. Nesmeyanov and L. G. Makarova, "The Organic Compounds of
- Mercury", North Holland Publishing Co., Amsterdam, 1967.
 F. C. Whitmore, E. L. Wittle, and B. R. Harriman, J. Am. Chem. Soc., 61, 1585 (1939).
- (43) R. C. Larock and H. C. Brown, J. Am. Chem. Soc., 92, 2467 (1970)
- (44) V. F. Mironov and A. L. Kravchenko, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Eng. Transl.), 1425 (1963).
 (45) P. J. Banney and P. R. Wells, Aust. J. Chem., 24, 317 (1971).
- (46) J. V. Hatton and W. G. Schneider, J. Chem. Phys., 39, 1330 (1963).
 (47) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", 3rd ed,
- Wiley, New York, N.Y., 1972, p 509.
- (48) By comparison with the spectrum of an authentic sample recorded by the authors.
- (49) J. Turkevich and P. W. Selwood, J. Am. Chem. Soc., 63, 1077 (1941).
- (50) A rotation, [α]²⁰₅₈₉, of 50.6° is reported for the neat d enantiomer of C₆H₅(CH₃)°CHCl; see 'Handbook of Chemistry and Physics'', 50th ed, Chemical Rubber Publishing Co., Cleveland, Ohio, 1969-1970, p C-148.
- (51) F. A. Bovey, "NMR Data Tables for Organic Compounds", Vol. 1, Interscience, New York, N.Y., 1967, pp 75-77.
- (52) It may be noted in Table II that on changing solvent from THF to isopropyl alcohol reaction rates increase by ≥10³, with the reaction of η⁵-C₅H₅Fe(CO)₂CH₅by paths 1 and 2 being enhanced more than the reaction of η⁵-C₅H₅Fe(CO)₂C₈H₄OCH₃-ρ by path 1. A similar rate enhancement over THF is found for acetone, and an increase on the order of 10⁵ is observed for nitrobenzene solvent. These numbers underscore marked sensitivity of the rate of the cleavage to the nature of the reaction medium.
- (53) R. S. Satchell, J. Chem. Soc., 5464 (1964).
- (53a) Note Added in Proof. An apparent exception is the reaction between η⁵-C₅H₅Mo(CO)₃CH₂SCH₃ and HgCl₂ which affords η⁵-C₅H₅Mo(CO)₃HgCl and an unreported organic product; see R. B. King and M. B. Bisnette, Inorg. Chem., 4, 486 (1965).
- (54) L. J. Dizikes and A. Wojcicki, Inorg. Chim. Acta, 20, L29 (1976); L. J, Dizikes and A. Wojcicki, J. Organomet. Chem., in press.
- (55) See, for example, S. N. Anderson, C. W. Fong, and M. D. Johnson, J. Chem. Soc., Chem, Commun., 163 (1973).
- In addition we note that a plot of $1/k_{obsd}$ vs. $1/[HgCl_2]$ for the reaction of η^5 -C₅H₅Fe(CO)₂CH(CH₃)₂ with HgCl₂ in THF at 25 °C shows a small positive (56) y intercept on interpolation to $1/[HgCl_2] = 0$, consistent with the rate expression in eq 9, since

$$k_{\text{obsd}} = \frac{k' \mathcal{K}_1[\text{HgX}_2]}{1 + \mathcal{K}_1[\text{HgX}_2]}$$

and therefore

$$\frac{1}{k_{\text{obsd}}} = \frac{1}{k' K_1 [\text{HgX}_2]} + \frac{1}{k'}$$

If no preequilibrium were involved in this cleavage, then the intercept would have been zero.

- (57) Studies in aqueous media on the cleavage of η⁵-C₅H₆Fe(CO)₂CH₂C₆H₄NH⁺ by HgCl_n^m indicate that HgCl⁺ is 7000 times as reactive as HgCl₂ (ref 23); however, no data are available for THF solutions.
- J. W. McDonald and F. Basolo, Inorg. Chem., 10, 492 (1971).
- (59) I. W. Nowell and D. R. Russell, J. Chem. Soc., Dalton Trans., 2393 (1972).
- (60) I. W. Nowell and D. R. Russell, J. Chem. Soc., Dalton Trans., 2396 (1972).
- (61) A. M. Ciplys, R. J. Geue, and M. R. Snow, J. Chem. Soc., Dalton Trans., 35 (1976)
- (62) It has been suggested that the reaction of Mn(CO)₅CH₃ and HgCl₂ may proceed by addition of HgCl₂ to manganese; see R. W. Johnson and R. G. Pearson, Inorg. Chem., 10, 2091 (1971).
- (63) D. L. Lichtenberger and R. F. Fenske, J. Am. Chem. Soc., 98, 50 (1976).